| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
sseq12d |
|
| 4 |
|
oveq2 |
|
| 5 |
|
oveq2 |
|
| 6 |
4 5
|
sseq12d |
|
| 7 |
|
oveq2 |
|
| 8 |
|
oveq2 |
|
| 9 |
7 8
|
sseq12d |
|
| 10 |
|
oveq2 |
|
| 11 |
|
oveq2 |
|
| 12 |
10 11
|
sseq12d |
|
| 13 |
|
om0 |
|
| 14 |
|
0ss |
|
| 15 |
13 14
|
eqsstrdi |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
omcl |
|
| 18 |
17
|
3adant2 |
|
| 19 |
|
omcl |
|
| 20 |
19
|
3adant1 |
|
| 21 |
|
simp1 |
|
| 22 |
|
oawordri |
|
| 23 |
18 20 21 22
|
syl3anc |
|
| 24 |
23
|
imp |
|
| 25 |
24
|
adantrl |
|
| 26 |
|
oaword |
|
| 27 |
20 26
|
syld3an3 |
|
| 28 |
27
|
biimpa |
|
| 29 |
28
|
adantrr |
|
| 30 |
25 29
|
sstrd |
|
| 31 |
|
omsuc |
|
| 32 |
31
|
3adant2 |
|
| 33 |
32
|
adantr |
|
| 34 |
|
omsuc |
|
| 35 |
34
|
3adant1 |
|
| 36 |
35
|
adantr |
|
| 37 |
30 33 36
|
3sstr4d |
|
| 38 |
37
|
exp520 |
|
| 39 |
38
|
com3r |
|
| 40 |
39
|
imp4c |
|
| 41 |
|
vex |
|
| 42 |
|
ss2iun |
|
| 43 |
|
omlim |
|
| 44 |
43
|
ad2ant2rl |
|
| 45 |
|
omlim |
|
| 46 |
45
|
adantl |
|
| 47 |
44 46
|
sseq12d |
|
| 48 |
42 47
|
imbitrrid |
|
| 49 |
48
|
anandirs |
|
| 50 |
41 49
|
mpanr1 |
|
| 51 |
50
|
expcom |
|
| 52 |
51
|
adantrd |
|
| 53 |
3 6 9 12 16 40 52
|
tfinds3 |
|
| 54 |
53
|
expd |
|
| 55 |
54
|
3impib |
|
| 56 |
55
|
3coml |
|