Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
sseq12d |
|
4 |
|
oveq2 |
|
5 |
|
oveq2 |
|
6 |
4 5
|
sseq12d |
|
7 |
|
oveq2 |
|
8 |
|
oveq2 |
|
9 |
7 8
|
sseq12d |
|
10 |
|
oveq2 |
|
11 |
|
oveq2 |
|
12 |
10 11
|
sseq12d |
|
13 |
|
om0 |
|
14 |
|
0ss |
|
15 |
13 14
|
eqsstrdi |
|
16 |
15
|
ad2antrr |
|
17 |
|
omcl |
|
18 |
17
|
3adant2 |
|
19 |
|
omcl |
|
20 |
19
|
3adant1 |
|
21 |
|
simp1 |
|
22 |
|
oawordri |
|
23 |
18 20 21 22
|
syl3anc |
|
24 |
23
|
imp |
|
25 |
24
|
adantrl |
|
26 |
|
oaword |
|
27 |
20 26
|
syld3an3 |
|
28 |
27
|
biimpa |
|
29 |
28
|
adantrr |
|
30 |
25 29
|
sstrd |
|
31 |
|
omsuc |
|
32 |
31
|
3adant2 |
|
33 |
32
|
adantr |
|
34 |
|
omsuc |
|
35 |
34
|
3adant1 |
|
36 |
35
|
adantr |
|
37 |
30 33 36
|
3sstr4d |
|
38 |
37
|
exp520 |
|
39 |
38
|
com3r |
|
40 |
39
|
imp4c |
|
41 |
|
vex |
|
42 |
|
ss2iun |
|
43 |
|
omlim |
|
44 |
43
|
ad2ant2rl |
|
45 |
|
omlim |
|
46 |
45
|
adantl |
|
47 |
44 46
|
sseq12d |
|
48 |
42 47
|
syl5ibr |
|
49 |
48
|
anandirs |
|
50 |
41 49
|
mpanr1 |
|
51 |
50
|
expcom |
|
52 |
51
|
adantrd |
|
53 |
3 6 9 12 16 40 52
|
tfinds3 |
|
54 |
53
|
expd |
|
55 |
54
|
3impib |
|
56 |
55
|
3coml |
|