Metamath Proof Explorer


Theorem omxpen

Description: The cardinal and ordinal products are always equinumerous. Exercise 10 of TakeutiZaring p. 89. (Contributed by Mario Carneiro, 3-Mar-2013)

Ref Expression
Assertion omxpen A On B On A 𝑜 B A × B

Proof

Step Hyp Ref Expression
1 xpcomeng A On B On A × B B × A
2 xpexg B On A On B × A V
3 2 ancoms A On B On B × A V
4 omcl A On B On A 𝑜 B On
5 eqid x B , y A A 𝑜 x + 𝑜 y = x B , y A A 𝑜 x + 𝑜 y
6 5 omxpenlem A On B On x B , y A A 𝑜 x + 𝑜 y : B × A 1-1 onto A 𝑜 B
7 f1oen2g B × A V A 𝑜 B On x B , y A A 𝑜 x + 𝑜 y : B × A 1-1 onto A 𝑜 B B × A A 𝑜 B
8 3 4 6 7 syl3anc A On B On B × A A 𝑜 B
9 entr A × B B × A B × A A 𝑜 B A × B A 𝑜 B
10 1 8 9 syl2anc A On B On A × B A 𝑜 B
11 10 ensymd A On B On A 𝑜 B A × B