Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
on0eln0
Next ⟩
dflim2
Metamath Proof Explorer
Ascii
Unicode
Theorem
on0eln0
Description:
An ordinal number contains zero iff it is nonzero.
(Contributed by
NM
, 6-Dec-2004)
Ref
Expression
Assertion
on0eln0
⊢
A
∈
On
→
∅
∈
A
↔
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
eloni
⊢
A
∈
On
→
Ord
⁡
A
2
ord0eln0
⊢
Ord
⁡
A
→
∅
∈
A
↔
A
≠
∅
3
1
2
syl
⊢
A
∈
On
→
∅
∈
A
↔
A
≠
∅