Metamath Proof Explorer


Theorem on3ind

Description: Triple induction over ordinals. (Contributed by Scott Fenton, 4-Sep-2024)

Ref Expression
Hypotheses on3ind.1 a = d φ ψ
on3ind.2 b = e ψ χ
on3ind.3 c = f χ θ
on3ind.4 a = d τ θ
on3ind.5 b = e η τ
on3ind.6 b = e ζ θ
on3ind.7 c = f σ τ
on3ind.8 a = X φ ρ
on3ind.9 b = Y ρ μ
on3ind.10 c = Z μ λ
on3ind.i a On b On c On d a e b f c θ d a e b χ d a f c ζ d a ψ e b f c τ e b σ f c η φ
Assertion on3ind X On Y On Z On λ

Proof

Step Hyp Ref Expression
1 on3ind.1 a = d φ ψ
2 on3ind.2 b = e ψ χ
3 on3ind.3 c = f χ θ
4 on3ind.4 a = d τ θ
5 on3ind.5 b = e η τ
6 on3ind.6 b = e ζ θ
7 on3ind.7 c = f σ τ
8 on3ind.8 a = X φ ρ
9 on3ind.9 b = Y ρ μ
10 on3ind.10 c = Z μ λ
11 on3ind.i a On b On c On d a e b f c θ d a e b χ d a f c ζ d a ψ e b f c τ e b σ f c η φ
12 onfr E Fr On
13 epweon E We On
14 weso E We On E Or On
15 sopo E Or On E Po On
16 13 14 15 mp2b E Po On
17 epse E Se On
18 predon a On Pred E On a = a
19 18 3ad2ant1 a On b On c On Pred E On a = a
20 predon b On Pred E On b = b
21 20 3ad2ant2 a On b On c On Pred E On b = b
22 predon c On Pred E On c = c
23 22 3ad2ant3 a On b On c On Pred E On c = c
24 23 raleqdv a On b On c On f Pred E On c θ f c θ
25 21 24 raleqbidv a On b On c On e Pred E On b f Pred E On c θ e b f c θ
26 19 25 raleqbidv a On b On c On d Pred E On a e Pred E On b f Pred E On c θ d a e b f c θ
27 21 raleqdv a On b On c On e Pred E On b χ e b χ
28 19 27 raleqbidv a On b On c On d Pred E On a e Pred E On b χ d a e b χ
29 23 raleqdv a On b On c On f Pred E On c ζ f c ζ
30 19 29 raleqbidv a On b On c On d Pred E On a f Pred E On c ζ d a f c ζ
31 26 28 30 3anbi123d a On b On c On d Pred E On a e Pred E On b f Pred E On c θ d Pred E On a e Pred E On b χ d Pred E On a f Pred E On c ζ d a e b f c θ d a e b χ d a f c ζ
32 19 raleqdv a On b On c On d Pred E On a ψ d a ψ
33 23 raleqdv a On b On c On f Pred E On c τ f c τ
34 21 33 raleqbidv a On b On c On e Pred E On b f Pred E On c τ e b f c τ
35 21 raleqdv a On b On c On e Pred E On b σ e b σ
36 32 34 35 3anbi123d a On b On c On d Pred E On a ψ e Pred E On b f Pred E On c τ e Pred E On b σ d a ψ e b f c τ e b σ
37 23 raleqdv a On b On c On f Pred E On c η f c η
38 31 36 37 3anbi123d a On b On c On d Pred E On a e Pred E On b f Pred E On c θ d Pred E On a e Pred E On b χ d Pred E On a f Pred E On c ζ d Pred E On a ψ e Pred E On b f Pred E On c τ e Pred E On b σ f Pred E On c η d a e b f c θ d a e b χ d a f c ζ d a ψ e b f c τ e b σ f c η
39 38 11 sylbid a On b On c On d Pred E On a e Pred E On b f Pred E On c θ d Pred E On a e Pred E On b χ d Pred E On a f Pred E On c ζ d Pred E On a ψ e Pred E On b f Pred E On c τ e Pred E On b σ f Pred E On c η φ
40 12 16 17 12 16 17 12 16 17 1 2 3 4 5 6 7 8 9 10 39 xpord3ind X On Y On Z On λ