Metamath Proof Explorer


Theorem onasuc

Description: Addition with successor. Theorem 4I(A2) of Enderton p. 79. (Note that this version of oasuc does not need Replacement.) (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion onasuc A On B ω A + 𝑜 suc B = suc A + 𝑜 B

Proof

Step Hyp Ref Expression
1 frsuc B ω rec x V suc x A ω suc B = x V suc x rec x V suc x A ω B
2 1 adantl A On B ω rec x V suc x A ω suc B = x V suc x rec x V suc x A ω B
3 peano2 B ω suc B ω
4 3 adantl A On B ω suc B ω
5 4 fvresd A On B ω rec x V suc x A ω suc B = rec x V suc x A suc B
6 fvres B ω rec x V suc x A ω B = rec x V suc x A B
7 6 adantl A On B ω rec x V suc x A ω B = rec x V suc x A B
8 7 fveq2d A On B ω x V suc x rec x V suc x A ω B = x V suc x rec x V suc x A B
9 2 5 8 3eqtr3d A On B ω rec x V suc x A suc B = x V suc x rec x V suc x A B
10 nnon B ω B On
11 suceloni B On suc B On
12 10 11 syl B ω suc B On
13 oav A On suc B On A + 𝑜 suc B = rec x V suc x A suc B
14 12 13 sylan2 A On B ω A + 𝑜 suc B = rec x V suc x A suc B
15 ovex A + 𝑜 B V
16 suceq x = A + 𝑜 B suc x = suc A + 𝑜 B
17 eqid x V suc x = x V suc x
18 15 sucex suc A + 𝑜 B V
19 16 17 18 fvmpt A + 𝑜 B V x V suc x A + 𝑜 B = suc A + 𝑜 B
20 15 19 ax-mp x V suc x A + 𝑜 B = suc A + 𝑜 B
21 oav A On B On A + 𝑜 B = rec x V suc x A B
22 10 21 sylan2 A On B ω A + 𝑜 B = rec x V suc x A B
23 22 fveq2d A On B ω x V suc x A + 𝑜 B = x V suc x rec x V suc x A B
24 20 23 eqtr3id A On B ω suc A + 𝑜 B = x V suc x rec x V suc x A B
25 9 14 24 3eqtr4d A On B ω A + 𝑜 suc B = suc A + 𝑜 B