Metamath Proof Explorer


Theorem ondomon

Description: The class of ordinals dominated by a given set is an ordinal. Theorem 56 of Suppes p. 227. This theorem can be proved without the axiom of choice, see hartogs . (Contributed by NM, 7-Nov-2003) (Proof modification is discouraged.) Use hartogs instead. (New usage is discouraged.)

Ref Expression
Assertion ondomon A V x On | x A On

Proof

Step Hyp Ref Expression
1 onelon z On y z y On
2 vex z V
3 onelss z On y z y z
4 3 imp z On y z y z
5 ssdomg z V y z y z
6 2 4 5 mpsyl z On y z y z
7 1 6 jca z On y z y On y z
8 domtr y z z A y A
9 8 anim2i y On y z z A y On y A
10 9 anassrs y On y z z A y On y A
11 7 10 sylan z On y z z A y On y A
12 11 exp31 z On y z z A y On y A
13 12 com12 y z z On z A y On y A
14 13 impd y z z On z A y On y A
15 breq1 x = z x A z A
16 15 elrab z x On | x A z On z A
17 breq1 x = y x A y A
18 17 elrab y x On | x A y On y A
19 14 16 18 3imtr4g y z z x On | x A y x On | x A
20 19 imp y z z x On | x A y x On | x A
21 20 gen2 y z y z z x On | x A y x On | x A
22 dftr2 Tr x On | x A y z y z z x On | x A y x On | x A
23 21 22 mpbir Tr x On | x A
24 ssrab2 x On | x A On
25 ordon Ord On
26 trssord Tr x On | x A x On | x A On Ord On Ord x On | x A
27 23 24 25 26 mp3an Ord x On | x A
28 elex A V A V
29 canth2g A V A 𝒫 A
30 domsdomtr x A A 𝒫 A x 𝒫 A
31 29 30 sylan2 x A A V x 𝒫 A
32 31 expcom A V x A x 𝒫 A
33 32 ralrimivw A V x On x A x 𝒫 A
34 28 33 syl A V x On x A x 𝒫 A
35 ss2rab x On | x A x On | x 𝒫 A x On x A x 𝒫 A
36 34 35 sylibr A V x On | x A x On | x 𝒫 A
37 pwexg A V 𝒫 A V
38 numth3 𝒫 A V 𝒫 A dom card
39 cardval2 𝒫 A dom card card 𝒫 A = x On | x 𝒫 A
40 37 38 39 3syl A V card 𝒫 A = x On | x 𝒫 A
41 fvex card 𝒫 A V
42 40 41 eqeltrrdi A V x On | x 𝒫 A V
43 ssexg x On | x A x On | x 𝒫 A x On | x 𝒫 A V x On | x A V
44 36 42 43 syl2anc A V x On | x A V
45 elong x On | x A V x On | x A On Ord x On | x A
46 44 45 syl A V x On | x A On Ord x On | x A
47 27 46 mpbiri A V x On | x A On