Metamath Proof Explorer


Theorem onego

Description: The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020)

Ref Expression
Assertion onego A Odd A Odd

Proof

Step Hyp Ref Expression
1 znegcl A A
2 1 adantr A A 1 2 A
3 znegcl A 1 2 A 1 2
4 3 adantl A A 1 2 A 1 2
5 peano2zm A A 1
6 5 zcnd A A 1
7 6 adantr A A 1 2 A 1
8 2cnd A A 1 2 2
9 2ne0 2 0
10 9 a1i A A 1 2 2 0
11 divneg A 1 2 2 0 A 1 2 = A 1 2
12 11 eleq1d A 1 2 2 0 A 1 2 A 1 2
13 7 8 10 12 syl3anc A A 1 2 A 1 2 A 1 2
14 4 13 mpbid A A 1 2 A 1 2
15 zcn A A
16 1cnd A 1
17 negsubdi A 1 A 1 = - A + 1
18 17 eqcomd A 1 - A + 1 = A 1
19 15 16 18 syl2anc A - A + 1 = A 1
20 19 oveq1d A - A + 1 2 = A 1 2
21 20 eleq1d A - A + 1 2 A 1 2
22 21 adantr A A 1 2 - A + 1 2 A 1 2
23 14 22 mpbird A A 1 2 - A + 1 2
24 2 23 jca A A 1 2 A - A + 1 2
25 isodd2 A Odd A A 1 2
26 isodd A Odd A - A + 1 2
27 24 25 26 3imtr4i A Odd A Odd