Metamath Proof Explorer


Theorem onelon

Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of BellMachover p. 469. (Contributed by NM, 26-Oct-2003)

Ref Expression
Assertion onelon A On B A B On

Proof

Step Hyp Ref Expression
1 eloni A On Ord A
2 ordelon Ord A B A B On
3 1 2 sylan A On B A B On