Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
oneluni
Next ⟩
onunisuci
Metamath Proof Explorer
Ascii
Unicode
Theorem
oneluni
Description:
An ordinal number equals its union with any element.
(Contributed by
NM
, 13-Jun-1994)
Ref
Expression
Hypothesis
on.1
⊢
A
∈
On
Assertion
oneluni
⊢
B
∈
A
→
A
∪
B
=
A
Proof
Step
Hyp
Ref
Expression
1
on.1
⊢
A
∈
On
2
1
onelssi
⊢
B
∈
A
→
B
⊆
A
3
ssequn2
⊢
B
⊆
A
↔
A
∪
B
=
A
4
2
3
sylib
⊢
B
∈
A
→
A
∪
B
=
A