Metamath Proof Explorer


Theorem onesuc

Description: Exponentiation with a successor exponent. Definition 8.30 of TakeutiZaring p. 67. (Contributed by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion onesuc A On B ω A 𝑜 suc B = A 𝑜 B 𝑜 A

Proof

Step Hyp Ref Expression
1 limom Lim ω
2 frsuc B ω rec x V x 𝑜 A 1 𝑜 ω suc B = x V x 𝑜 A rec x V x 𝑜 A 1 𝑜 ω B
3 peano2 B ω suc B ω
4 3 fvresd B ω rec x V x 𝑜 A 1 𝑜 ω suc B = rec x V x 𝑜 A 1 𝑜 suc B
5 fvres B ω rec x V x 𝑜 A 1 𝑜 ω B = rec x V x 𝑜 A 1 𝑜 B
6 5 fveq2d B ω x V x 𝑜 A rec x V x 𝑜 A 1 𝑜 ω B = x V x 𝑜 A rec x V x 𝑜 A 1 𝑜 B
7 2 4 6 3eqtr3d B ω rec x V x 𝑜 A 1 𝑜 suc B = x V x 𝑜 A rec x V x 𝑜 A 1 𝑜 B
8 1 7 oesuclem A On B ω A 𝑜 suc B = A 𝑜 B 𝑜 A