Metamath Proof Explorer


Theorem onfin2

Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013)

Ref Expression
Assertion onfin2 ω = On Fin

Proof

Step Hyp Ref Expression
1 nnon x ω x On
2 onfin x On x Fin x ω
3 2 biimprcd x ω x On x Fin
4 1 3 jcai x ω x On x Fin
5 2 biimpa x On x Fin x ω
6 4 5 impbii x ω x On x Fin
7 elin x On Fin x On x Fin
8 6 7 bitr4i x ω x On Fin
9 8 eqriv ω = On Fin