Metamath Proof Explorer


Theorem onfrALTlem1

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem1 a On a x a a x = y a a y =

Proof

Step Hyp Ref Expression
1 19.8a x a a x = x x a a x =
2 1 a1i a On a x a a x = x x a a x =
3 cbvexsv x x a a x = y y x x a a x =
4 2 3 syl6ib a On a x a a x = y y x x a a x =
5 sbsbc y x x a a x = [˙y / x]˙ x a a x =
6 onfrALTlem4 [˙y / x]˙ x a a x = y a a y =
7 5 6 bitri y x x a a x = y a a y =
8 7 exbii y y x x a a x = y y a a y =
9 4 8 syl6ib a On a x a a x = y y a a y =
10 df-rex y a a y = y y a a y =
11 9 10 syl6ibr a On a x a a x = y a a y =