Metamath Proof Explorer


Theorem onfrALTlem3

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem3 a On a x a ¬ a x = y a x a x y =

Proof

Step Hyp Ref Expression
1 ssid a x a x
2 simpr x a ¬ a x = ¬ a x =
3 2 a1i a On a x a ¬ a x = ¬ a x =
4 df-ne a x ¬ a x =
5 3 4 syl6ibr a On a x a ¬ a x = a x
6 pm3.2 a x a x a x a x a x a x
7 1 5 6 mpsylsyld a On a x a ¬ a x = a x a x a x
8 vex x V
9 8 inex2 a x V
10 inss2 a x x
11 simpl a On a a On
12 simpl x a ¬ a x = x a
13 ssel a On x a x On
14 11 12 13 syl2im a On a x a ¬ a x = x On
15 eloni x On Ord x
16 14 15 syl6 a On a x a ¬ a x = Ord x
17 ordwe Ord x E We x
18 16 17 syl6 a On a x a ¬ a x = E We x
19 wess a x x E We x E We a x
20 10 18 19 mpsylsyld a On a x a ¬ a x = E We a x
21 wefr E We a x E Fr a x
22 20 21 syl6 a On a x a ¬ a x = E Fr a x
23 dfepfr E Fr a x b b a x b y b b y =
24 22 23 syl6ib a On a x a ¬ a x = b b a x b y b b y =
25 spsbc a x V b b a x b y b b y = [˙ a x / b]˙ b a x b y b b y =
26 9 24 25 mpsylsyld a On a x a ¬ a x = [˙ a x / b]˙ b a x b y b b y =
27 onfrALTlem5 [˙ a x / b]˙ b a x b y b b y = a x a x a x y a x a x y =
28 26 27 syl6ib a On a x a ¬ a x = a x a x a x y a x a x y =
29 7 28 mpdd a On a x a ¬ a x = y a x a x y =