Metamath Proof Explorer


Theorem onfrALTlem3VD

Description: Virtual deduction proof of onfrALTlem3 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem3 is onfrALTlem3VD without virtual deductions and was automatically derived from onfrALTlem3VD .

1:: |- (. ( a C_ On /\ a =/= (/) ) ->. ( a C_ On /\ a =/= (/) ) ).
2:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( x e. a /\ -. ( a i^i x ) = (/) ) ).
3:2: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. a ).
4:1: |- (. ( a C_ On /\ a =/= (/) ) ->. a C_ On ).
5:3,4: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. On ).
6:5: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. Ord x ).
7:6: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->.E We x ).
8:: |- ( a i^i x ) C x
9:7,8: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->.E We ( a i^i x ) ).
10:9: |- (. ( a C On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->.E Fr ( a i^i x ) ).
11:10: |- (. ( a C On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ).
12:: |- x e.V
13:12,8: |- ( a i^i x ) e. V
14:13,11: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ).
15:: |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) )
16:14,15: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ).
17:: |- ( a i^i x ) C_ ( a i^i x )
18:2: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. -. ( a i^i x ) = (/) ).
19:18: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( a i^i x ) =/= (/) ).
20:17,19: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ).
qed:16,20: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ).
(Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem3VD a On a , x a ¬ a x = y a x a x y =

Proof

Step Hyp Ref Expression
1 vex x V
2 inss2 a x x
3 1 2 ssexi a x V
4 idn2 a On a , x a ¬ a x = x a ¬ a x =
5 simpl x a ¬ a x = x a
6 4 5 e2 a On a , x a ¬ a x = x a
7 idn1 a On a a On a
8 simpl a On a a On
9 7 8 e1a a On a a On
10 ssel a On x a x On
11 10 com12 x a a On x On
12 6 9 11 e21 a On a , x a ¬ a x = x On
13 eloni x On Ord x
14 12 13 e2 a On a , x a ¬ a x = Ord x
15 ordwe Ord x E We x
16 14 15 e2 a On a , x a ¬ a x = E We x
17 wess a x x E We x E We a x
18 17 com12 E We x a x x E We a x
19 16 2 18 e20 a On a , x a ¬ a x = E We a x
20 wefr E We a x E Fr a x
21 19 20 e2 a On a , x a ¬ a x = E Fr a x
22 dfepfr E Fr a x b b a x b y b b y =
23 22 biimpi E Fr a x b b a x b y b b y =
24 21 23 e2 a On a , x a ¬ a x = b b a x b y b b y =
25 spsbc a x V b b a x b y b b y = [˙ a x / b]˙ b a x b y b b y =
26 3 24 25 e02 a On a , x a ¬ a x = [˙ a x / b]˙ b a x b y b b y =
27 onfrALTlem5 [˙ a x / b]˙ b a x b y b b y = a x a x a x y a x a x y =
28 26 27 e2bi a On a , x a ¬ a x = a x a x a x y a x a x y =
29 ssid a x a x
30 simpr x a ¬ a x = ¬ a x =
31 4 30 e2 a On a , x a ¬ a x = ¬ a x =
32 df-ne a x ¬ a x =
33 32 biimpri ¬ a x = a x
34 31 33 e2 a On a , x a ¬ a x = a x
35 pm3.2 a x a x a x a x a x a x
36 29 34 35 e02 a On a , x a ¬ a x = a x a x a x
37 id a x a x a x y a x a x y = a x a x a x y a x a x y =
38 28 36 37 e22 a On a , x a ¬ a x = y a x a x y =