Metamath Proof Explorer


Theorem onfrALTlem4

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem4 [˙y / x]˙ x a a x = y a a y =

Proof

Step Hyp Ref Expression
1 sbcan [˙y / x]˙ x a a x = [˙y / x]˙ x a [˙y / x]˙ a x =
2 sbcel1v [˙y / x]˙ x a y a
3 vex y V
4 sbceqg y V [˙y / x]˙ a x = y / x a x = y / x
5 3 4 ax-mp [˙y / x]˙ a x = y / x a x = y / x
6 csbin y / x a x = y / x a y / x x
7 csbconstg y V y / x a = a
8 3 7 ax-mp y / x a = a
9 csbvarg y V y / x x = y
10 3 9 ax-mp y / x x = y
11 8 10 ineq12i y / x a y / x x = a y
12 6 11 eqtri y / x a x = a y
13 csb0 y / x =
14 12 13 eqeq12i y / x a x = y / x a y =
15 5 14 bitri [˙y / x]˙ a x = a y =
16 2 15 anbi12i [˙y / x]˙ x a [˙y / x]˙ a x = y a a y =
17 1 16 bitri [˙y / x]˙ x a a x = y a a y =