|  1::         |  |- y e.V
        | 
 |  2:1:        |  |- ( [. y / x ]. ( a i^i x ) = (/) <-> [
       y / x ]_ ( a i^i x ) = [_ y / x ]_ (/) )
        | 
 |  3:1:        |  |- [_ y / x ]_ ( a i^i x ) = ( [_ y / x ]_
       a i^i [_ y / x ]_ x )
        | 
 |  4:1:        |  |- [_ y / x ]_ a = a
        | 
 |  5:1:        |  |- [_ y / x ]_ x = y
        | 
 |  6:4,5:      |  |- ( [_ y / x ]_ a i^i [_ y / x ]_ x ) = (
       a i^i y )
        | 
 |  7:3,6:      |  |- [_ y / x ]_ ( a i^i x ) = ( a i^i y )
        | 
 |  8:1:        |  |- [_ y / x ]_ (/) = (/)
        | 
 |  9:7,8:      |  |- ( [_ y / x ]_ ( a i^i x ) = [_ y / x ]_
       (/) <-> ( a i^i y ) = (/) )
        | 
 |  10:2,9:     |  |- ( [. y / x ]. ( a i^i x ) = (/) <-> ( a
       i^i y ) = (/) )
        | 
 |  11:1:       |  |- ( [. y / x ]. x e. a <-> y e. a )
        | 
 |  12:11,10:   |  |- ( ( [. y / x ]. x e. a /\ [. y / x ]. (
       a i^i x ) = (/) )  <-> ( y e. a /\ ( a i^i y ) = (/) ) )
        | 
 |  13:1:       |  |- ( [. y / x ]. ( x e. a /\ ( a i^i x ) =
       (/) ) <-> ( [. y / x ]. x e. a /\ [. y / x ]. ( a i^i x ) = (/) ) )
        | 
 |  qed:13,12:  |  |- ( [. y / x ]. ( x e. a /\ ( a i^i x ) =
       (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) )
        |