1:: | |- y e.V
|
2:1: | |- ( [. y / x ]. ( a i^i x ) = (/) <-> [
y / x ]_ ( a i^i x ) = [_ y / x ]_ (/) )
|
3:1: | |- [_ y / x ]_ ( a i^i x ) = ( [_ y / x ]_
a i^i [_ y / x ]_ x )
|
4:1: | |- [_ y / x ]_ a = a
|
5:1: | |- [_ y / x ]_ x = y
|
6:4,5: | |- ( [_ y / x ]_ a i^i [_ y / x ]_ x ) = (
a i^i y )
|
7:3,6: | |- [_ y / x ]_ ( a i^i x ) = ( a i^i y )
|
8:1: | |- [_ y / x ]_ (/) = (/)
|
9:7,8: | |- ( [_ y / x ]_ ( a i^i x ) = [_ y / x ]_
(/) <-> ( a i^i y ) = (/) )
|
10:2,9: | |- ( [. y / x ]. ( a i^i x ) = (/) <-> ( a
i^i y ) = (/) )
|
11:1: | |- ( [. y / x ]. x e. a <-> y e. a )
|
12:11,10: | |- ( ( [. y / x ]. x e. a /\ [. y / x ]. (
a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) )
|
13:1: | |- ( [. y / x ]. ( x e. a /\ ( a i^i x ) =
(/) ) <-> ( [. y / x ]. x e. a /\ [. y / x ]. ( a i^i x ) = (/) ) )
|
qed:13,12: | |- ( [. y / x ]. ( x e. a /\ ( a i^i x ) =
(/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) )
|