Metamath Proof Explorer


Theorem onfrALTlem5VD

Description: Virtual deduction proof of onfrALTlem5 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 is onfrALTlem5VD without virtual deductions and was automatically derived from onfrALTlem5VD .

1:: |- a e.V
2:1: |- ( a i^i x ) e. V
3:2: |- ( [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) = (/) )
4:3: |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> -. ( a i^i x ) = (/) )
5:: |- ( ( a i^i x ) =/= (/) <-> -. ( a i^i x ) = (/) )
6:4,5: |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) =/= (/) )
7:2: |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. -. b = (/) )
8:: |- ( b =/= (/) <-> -. b = (/) )
9:8: |- A. b ( b =/= (/) <-> -. b = (/) )
10:2,9: |- ( [. ( a i^i x ) / b ]. b =/= (/) <-> [. ( a i^i x ) / b ]. -. b = (/) )
11:7,10: |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. b =/= (/) )
12:6,11: |- ( [. ( a i^i x ) / b ]. b =/= (/) <-> ( a i^i x ) =/= (/) )
13:2: |- ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) <-> ( a i^i x ) C_ ( a i^i x ) )
14:12,13: |- ( ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) )
15:2: |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) )
16:15,14: |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) )
17:2: |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y )
18:2: |- [_ ( a i^i x ) / b ]_ b = ( a i^i x )
19:2: |- [_ ( a i^i x ) / b ]_ y = y
20:18,19: |- ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) = ( ( a i^i x ) i^i y )
21:17,20: |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( ( a i^i x ) i^i y )
22:2: |- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) )
23:2: |- [_ ( a i^i x ) / b ]_ (/) = (/)
24:21,23: |- ( [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) <-> ( ( a i^i x ) i^i y ) = (/) )
25:22,24: |- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> ( ( a i^i x ) i^i y ) = (/) )
26:2: |- ( [. ( a i^i x ) / b ]. y e. b <-> y e. ( a i^i x ) )
27:25,26: |- ( ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
28:2: |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) )
29:27,28: |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
30:29: |- A. y ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
31:30: |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
32:: |- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
33:31,32: |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) )
34:2: |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) )
35:33,34: |- ( [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) )
36:: |- ( E. y e. b ( b i^i y ) = (/) <-> E. y ( y e. b /\ ( b i^i y ) = (/) ) )
37:36: |- A. b ( E. y e. b ( b i^i y ) = (/) <-> E. y ( y e. b /\ ( b i^i y ) = (/) ) )
38:2,37: |- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) )
39:35,38: |- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) )
40:16,39: |- ( ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) )
41:2: |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) )
qed:40,41: |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) )
(Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem5VD [˙ a x / b]˙ b a x b y b b y = a x a x a x y a x a x y =

Proof

Step Hyp Ref Expression
1 vex a V
2 1 inex1 a x V
3 sbcimg a x V [˙ a x / b]˙ b a x b y b b y = [˙ a x / b]˙ b a x b [˙ a x / b]˙ y b b y =
4 2 3 e0a [˙ a x / b]˙ b a x b y b b y = [˙ a x / b]˙ b a x b [˙ a x / b]˙ y b b y =
5 sbcan [˙ a x / b]˙ b a x b [˙ a x / b]˙ b a x [˙ a x / b]˙ b
6 sseq1 b = a x b a x a x a x
7 2 6 sbcie [˙ a x / b]˙ b a x a x a x
8 df-ne b ¬ b =
9 8 sbcbii [˙ a x / b]˙ b [˙ a x / b]˙ ¬ b =
10 sbcng a x V [˙ a x / b]˙ ¬ b = ¬ [˙ a x / b]˙ b =
11 10 bicomd a x V ¬ [˙ a x / b]˙ b = [˙ a x / b]˙ ¬ b =
12 2 11 e0a ¬ [˙ a x / b]˙ b = [˙ a x / b]˙ ¬ b =
13 eqsbc1 a x V [˙ a x / b]˙ b = a x =
14 2 13 e0a [˙ a x / b]˙ b = a x =
15 14 necon3bbii ¬ [˙ a x / b]˙ b = a x
16 9 12 15 3bitr2i [˙ a x / b]˙ b a x
17 7 16 anbi12i [˙ a x / b]˙ b a x [˙ a x / b]˙ b a x a x a x
18 5 17 bitri [˙ a x / b]˙ b a x b a x a x a x
19 df-rex y b b y = y y b b y =
20 19 sbcbii [˙ a x / b]˙ y b b y = [˙ a x / b]˙ y y b b y =
21 sbcan [˙ a x / b]˙ y b b y = [˙ a x / b]˙ y b [˙ a x / b]˙ b y =
22 sbcel2gv a x V [˙ a x / b]˙ y b y a x
23 2 22 e0a [˙ a x / b]˙ y b y a x
24 sbceqg a x V [˙ a x / b]˙ b y = a x / b b y = a x / b
25 2 24 e0a [˙ a x / b]˙ b y = a x / b b y = a x / b
26 csbin a x / b b y = a x / b b a x / b y
27 csbvarg a x V a x / b b = a x
28 2 27 e0a a x / b b = a x
29 csbconstg a x V a x / b y = y
30 2 29 e0a a x / b y = y
31 28 30 ineq12i a x / b b a x / b y = a x y
32 26 31 eqtri a x / b b y = a x y
33 csb0 a x / b =
34 32 33 eqeq12i a x / b b y = a x / b a x y =
35 25 34 bitri [˙ a x / b]˙ b y = a x y =
36 23 35 anbi12i [˙ a x / b]˙ y b [˙ a x / b]˙ b y = y a x a x y =
37 21 36 bitri [˙ a x / b]˙ y b b y = y a x a x y =
38 37 exbii y [˙ a x / b]˙ y b b y = y y a x a x y =
39 sbcex2 [˙ a x / b]˙ y y b b y = y [˙ a x / b]˙ y b b y =
40 df-rex y a x a x y = y y a x a x y =
41 38 39 40 3bitr4i [˙ a x / b]˙ y y b b y = y a x a x y =
42 20 41 bitri [˙ a x / b]˙ y b b y = y a x a x y =
43 18 42 imbi12i [˙ a x / b]˙ b a x b [˙ a x / b]˙ y b b y = a x a x a x y a x a x y =
44 4 43 bitri [˙ a x / b]˙ b a x b y b b y = a x a x a x y a x a x y =