1:: | |- a e.V
|
2:1: | |- ( a i^i x ) e. V
|
3:2: | |- ( [. ( a i^i x ) / b ]. b = (/) <-> ( a
i^i x ) = (/) )
|
4:3: | |- ( -. [. ( a i^i x ) / b ]. b = (/) <->
-. ( a i^i x ) = (/) )
|
5:: | |- ( ( a i^i x ) =/= (/) <-> -. ( a i^i x
) = (/) )
|
6:4,5: | |- ( -. [. ( a i^i x ) / b ]. b = (/) <->
( a i^i x ) =/= (/) )
|
7:2: | |- ( -. [. ( a i^i x ) / b ]. b = (/) <->
[. ( a i^i x ) / b ]. -. b = (/) )
|
8:: | |- ( b =/= (/) <-> -. b = (/) )
|
9:8: | |- A. b ( b =/= (/) <-> -. b = (/) )
|
10:2,9: | |- ( [. ( a i^i x ) / b ]. b =/= (/) <->
[. ( a i^i x ) / b ]. -. b = (/) )
|
11:7,10: | |- ( -. [. ( a i^i x ) / b ]. b = (/) <->
[. ( a i^i x ) / b ]. b =/= (/) )
|
12:6,11: | |- ( [. ( a i^i x ) / b ]. b =/= (/) <-> (
a i^i x ) =/= (/) )
|
13:2: | |- ( [. ( a i^i x ) / b ]. b C_ ( a i^i x
) <-> ( a i^i x ) C_ ( a i^i x ) )
|
14:12,13: | |- ( ( [. ( a i^i x ) / b ]. b C_ ( a i^i
x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) <-> ( ( a i^i x ) C_ ( a
i^i x ) /\ ( a i^i x ) =/= (/) ) )
|
15:2: | |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i
x ) /\ b =/= (/) ) <-> ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\
[. ( a i^i x ) / b ]. b =/= (/) ) )
|
16:15,14: | |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i
x ) /\ b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x )
=/= (/) ) )
|
17:2: | |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = (
[_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y )
|
18:2: | |- [_ ( a i^i x ) / b ]_ b = ( a i^i x )
|
19:2: | |- [_ ( a i^i x ) / b ]_ y = y
|
20:18,19: | |- ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a
i^i x ) / b ]_ y ) = ( ( a i^i x ) i^i y )
|
21:17,20: | |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( (
a i^i x ) i^i y )
|
22:2: | |- ( [. ( a i^i x ) / b ]. ( b i^i y ) =
(/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_
(/) )
|
23:2: | |- [_ ( a i^i x ) / b ]_ (/) = (/)
|
24:21,23: | |- ( [_ ( a i^i x ) / b ]_ ( b i^i y ) =
[_ ( a i^i x ) / b ]_ (/) <-> ( ( a i^i x ) i^i y ) = (/) )
|
25:22,24: | |- ( [. ( a i^i x ) / b ]. ( b i^i y ) =
(/) <-> ( ( a i^i x ) i^i y ) = (/) )
|
26:2: | |- ( [. ( a i^i x ) / b ]. y e. b <-> y e.
( a i^i x ) )
|
27:25,26: | |- ( ( [. ( a i^i x ) / b ]. y e. b /\ [.
( a i^i x ) / b ]. ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( (
a i^i x ) i^i y ) = (/) ) )
|
28:2: | |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b
i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x )
/ b ]. ( b i^i y ) = (/) ) )
|
29:27,28: | |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b
i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) =
(/) ) )
|
30:29: | |- A. y ( [. ( a i^i x ) / b ]. ( y e. b
/\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y ) = (/) ) )
|
31:30: | |- ( E. y [. ( a i^i x ) / b ]. ( y e. b
/\ ( b i^i y ) = (/) ) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i y ) = (/) ) )
|
32:: | |- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i
y ) = (/) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/)
) )
|
33:31,32: | |- ( E. y [. ( a i^i x ) / b ]. ( y e. b
/\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y )
= (/) )
|
34:2: | |- ( E. y [. ( a i^i x ) / b ]. ( y e. b
/\ ( b i^i y ) = (/) ) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ (
b i^i y ) = (/) ) )
|
35:33,34: | |- ( [. ( a i^i x ) / b ]. E. y ( y e. b
/\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y
) = (/) )
|
36:: | |- ( E. y e. b ( b i^i y ) = (/) <-> E. y
( y e. b /\ ( b i^i y ) = (/) ) )
|
37:36: | |- A. b ( E. y e. b ( b i^i y ) = (/) <->
E. y ( y e. b /\ ( b i^i y ) = (/) ) )
|
38:2,37: | |- ( [. ( a i^i x ) / b ]. E. y e. b ( b
i^i y ) = (/) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y )
= (/) ) )
|
39:35,38: | |- ( [. ( a i^i x ) / b ]. E. y e. b ( b
i^i y ) = (/) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) )
|
40:16,39: | |- ( ( [. ( a i^i x ) / b ]. ( b C_ ( a
i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i
y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/=
(/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) )
|
41:2: | |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a
i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a
i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) /
b ]. E. y e. b ( b i^i y ) = (/) ) )
|
qed:40,41: | |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a
i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a
i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x
) ( ( a i^i x ) i^i y ) = (/) ) )
|