Metamath Proof Explorer


Theorem onfununi

Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of Enderton p. 218. (Contributed by Eric Schmidt, 26-May-2009)

Ref Expression
Hypotheses onfununi.1 Lim y F y = x y F x
onfununi.2 x On y On x y F x F y
Assertion onfununi S T S On S F S = x S F x

Proof

Step Hyp Ref Expression
1 onfununi.1 Lim y F y = x y F x
2 onfununi.2 x On y On x y F x F y
3 ssorduni S On Ord S
4 3 ad2antrr S On ¬ S S S Ord S
5 nelneq x S ¬ S S ¬ x = S
6 elssuni x S x S
7 6 adantl S On x S x S
8 ssel S On x S x On
9 eloni x On Ord x
10 8 9 syl6 S On x S Ord x
11 10 imp S On x S Ord x
12 ordsseleq Ord x Ord S x S x S x = S
13 11 3 12 syl2an S On x S S On x S x S x = S
14 13 anabss1 S On x S x S x S x = S
15 7 14 mpbid S On x S x S x = S
16 15 ord S On x S ¬ x S x = S
17 16 con1d S On x S ¬ x = S x S
18 5 17 syl5 S On x S x S ¬ S S x S
19 18 exp4b S On x S x S ¬ S S x S
20 19 pm2.43d S On x S ¬ S S x S
21 20 com23 S On ¬ S S x S x S
22 21 imp S On ¬ S S x S x S
23 22 ssrdv S On ¬ S S S S
24 ssn0 S S S S
25 23 24 sylan S On ¬ S S S S
26 23 unissd S On ¬ S S S S
27 orduniss Ord S S S
28 3 27 syl S On S S
29 28 adantr S On ¬ S S S S
30 26 29 eqssd S On ¬ S S S = S
31 30 adantr S On ¬ S S S S = S
32 df-lim Lim S Ord S S S = S
33 4 25 31 32 syl3anbrc S On ¬ S S S Lim S
34 33 an32s S On S ¬ S S Lim S
35 34 3adantl1 S T S On S ¬ S S Lim S
36 ssonuni S T S On S On
37 limeq y = S Lim y Lim S
38 fveq2 y = S F y = F S
39 iuneq1 y = S x y F x = x S F x
40 38 39 eqeq12d y = S F y = x y F x F S = x S F x
41 37 40 imbi12d y = S Lim y F y = x y F x Lim S F S = x S F x
42 41 1 vtoclg S On Lim S F S = x S F x
43 36 42 syl6 S T S On Lim S F S = x S F x
44 43 imp S T S On Lim S F S = x S F x
45 44 3adant3 S T S On S Lim S F S = x S F x
46 45 adantr S T S On S ¬ S S Lim S F S = x S F x
47 35 46 mpd S T S On S ¬ S S F S = x S F x
48 eluni2 x S y S x y
49 ssel S On y S y On
50 49 anim1d S On y S x y y On x y
51 onelon y On x y x On
52 50 51 syl6 S On y S x y x On
53 49 adantrd S On y S x y y On
54 eloni y On Ord y
55 49 54 syl6 S On y S Ord y
56 ordelss Ord y x y x y
57 56 a1i S On Ord y x y x y
58 55 57 syland S On y S x y x y
59 52 53 58 3jcad S On y S x y x On y On x y
60 59 2 syl6 S On y S x y F x F y
61 60 expd S On y S x y F x F y
62 61 reximdvai S On y S x y y S F x F y
63 48 62 syl5bi S On x S y S F x F y
64 ssiun y S F x F y F x y S F y
65 63 64 syl6 S On x S F x y S F y
66 65 ralrimiv S On x S F x y S F y
67 iunss x S F x y S F y x S F x y S F y
68 66 67 sylibr S On x S F x y S F y
69 fveq2 y = x F y = F x
70 69 cbviunv y S F y = x S F x
71 68 70 sseqtrdi S On x S F x x S F x
72 71 3ad2ant2 S T S On S x S F x x S F x
73 72 adantr S T S On S ¬ S S x S F x x S F x
74 47 73 eqsstrd S T S On S ¬ S S F S x S F x
75 74 ex S T S On S ¬ S S F S x S F x
76 fveq2 x = S F x = F S
77 76 ssiun2s S S F S x S F x
78 75 77 pm2.61d2 S T S On S F S x S F x
79 36 imp S T S On S On
80 79 3adant3 S T S On S S On
81 8 3ad2ant2 S T S On S x S x On
82 81 6 jca2 S T S On S x S x On x S
83 sseq2 y = S x y x S
84 83 anbi2d y = S x On x y x On x S
85 38 sseq2d y = S F x F y F x F S
86 84 85 imbi12d y = S x On x y F x F y x On x S F x F S
87 2 3com12 y On x On x y F x F y
88 87 3expib y On x On x y F x F y
89 86 88 vtoclga S On x On x S F x F S
90 80 82 89 sylsyld S T S On S x S F x F S
91 90 ralrimiv S T S On S x S F x F S
92 iunss x S F x F S x S F x F S
93 91 92 sylibr S T S On S x S F x F S
94 78 93 eqssd S T S On S F S = x S F x