Step |
Hyp |
Ref |
Expression |
1 |
|
onfununi.1 |
|
2 |
|
onfununi.2 |
|
3 |
|
ssorduni |
|
4 |
3
|
ad2antrr |
|
5 |
|
nelneq |
|
6 |
|
elssuni |
|
7 |
6
|
adantl |
|
8 |
|
ssel |
|
9 |
|
eloni |
|
10 |
8 9
|
syl6 |
|
11 |
10
|
imp |
|
12 |
|
ordsseleq |
|
13 |
11 3 12
|
syl2an |
|
14 |
13
|
anabss1 |
|
15 |
7 14
|
mpbid |
|
16 |
15
|
ord |
|
17 |
16
|
con1d |
|
18 |
5 17
|
syl5 |
|
19 |
18
|
exp4b |
|
20 |
19
|
pm2.43d |
|
21 |
20
|
com23 |
|
22 |
21
|
imp |
|
23 |
22
|
ssrdv |
|
24 |
|
ssn0 |
|
25 |
23 24
|
sylan |
|
26 |
23
|
unissd |
|
27 |
|
orduniss |
|
28 |
3 27
|
syl |
|
29 |
28
|
adantr |
|
30 |
26 29
|
eqssd |
|
31 |
30
|
adantr |
|
32 |
|
df-lim |
|
33 |
4 25 31 32
|
syl3anbrc |
|
34 |
33
|
an32s |
|
35 |
34
|
3adantl1 |
|
36 |
|
ssonuni |
|
37 |
|
limeq |
|
38 |
|
fveq2 |
|
39 |
|
iuneq1 |
|
40 |
38 39
|
eqeq12d |
|
41 |
37 40
|
imbi12d |
|
42 |
41 1
|
vtoclg |
|
43 |
36 42
|
syl6 |
|
44 |
43
|
imp |
|
45 |
44
|
3adant3 |
|
46 |
45
|
adantr |
|
47 |
35 46
|
mpd |
|
48 |
|
eluni2 |
|
49 |
|
ssel |
|
50 |
49
|
anim1d |
|
51 |
|
onelon |
|
52 |
50 51
|
syl6 |
|
53 |
49
|
adantrd |
|
54 |
|
eloni |
|
55 |
49 54
|
syl6 |
|
56 |
|
ordelss |
|
57 |
56
|
a1i |
|
58 |
55 57
|
syland |
|
59 |
52 53 58
|
3jcad |
|
60 |
59 2
|
syl6 |
|
61 |
60
|
expd |
|
62 |
61
|
reximdvai |
|
63 |
48 62
|
syl5bi |
|
64 |
|
ssiun |
|
65 |
63 64
|
syl6 |
|
66 |
65
|
ralrimiv |
|
67 |
|
iunss |
|
68 |
66 67
|
sylibr |
|
69 |
|
fveq2 |
|
70 |
69
|
cbviunv |
|
71 |
68 70
|
sseqtrdi |
|
72 |
71
|
3ad2ant2 |
|
73 |
72
|
adantr |
|
74 |
47 73
|
eqsstrd |
|
75 |
74
|
ex |
|
76 |
|
fveq2 |
|
77 |
76
|
ssiun2s |
|
78 |
75 77
|
pm2.61d2 |
|
79 |
36
|
imp |
|
80 |
79
|
3adant3 |
|
81 |
8
|
3ad2ant2 |
|
82 |
81 6
|
jca2 |
|
83 |
|
sseq2 |
|
84 |
83
|
anbi2d |
|
85 |
38
|
sseq2d |
|
86 |
84 85
|
imbi12d |
|
87 |
2
|
3com12 |
|
88 |
87
|
3expib |
|
89 |
86 88
|
vtoclga |
|
90 |
80 82 89
|
sylsyld |
|
91 |
90
|
ralrimiv |
|
92 |
|
iunss |
|
93 |
91 92
|
sylibr |
|
94 |
78 93
|
eqssd |
|