Metamath Proof Explorer


Theorem onin

Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995)

Ref Expression
Assertion onin A On B On A B On

Proof

Step Hyp Ref Expression
1 eloni A On Ord A
2 eloni B On Ord B
3 ordin Ord A Ord B Ord A B
4 1 2 3 syl2an A On B On Ord A B
5 simpl A On B On A On
6 inex1g A On A B V
7 elong A B V A B On Ord A B
8 5 6 7 3syl A On B On A B On Ord A B
9 4 8 mpbird A On B On A B On