Metamath Proof Explorer


Theorem onintrab

Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003)

Ref Expression
Assertion onintrab x On | φ V x On | φ On

Proof

Step Hyp Ref Expression
1 intex x On | φ x On | φ V
2 ssrab2 x On | φ On
3 oninton x On | φ On x On | φ x On | φ On
4 2 3 mpan x On | φ x On | φ On
5 1 4 sylbir x On | φ V x On | φ On
6 elex x On | φ On x On | φ V
7 5 6 impbii x On | φ V x On | φ On