Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onintrab |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intex | ||
| 2 | ssrab2 | ||
| 3 | oninton | ||
| 4 | 2 3 | mpan | |
| 5 | 1 4 | sylbir | |
| 6 | elex | ||
| 7 | 5 6 | impbii |