Metamath Proof Explorer


Theorem onmindif

Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003)

Ref Expression
Assertion onmindif A On B On B A suc B

Proof

Step Hyp Ref Expression
1 eldif x A suc B x A ¬ x suc B
2 ssel2 A On x A x On
3 ontri1 x On B On x B ¬ B x
4 onsssuc x On B On x B x suc B
5 3 4 bitr3d x On B On ¬ B x x suc B
6 5 con1bid x On B On ¬ x suc B B x
7 2 6 sylan A On x A B On ¬ x suc B B x
8 7 biimpd A On x A B On ¬ x suc B B x
9 8 exp31 A On x A B On ¬ x suc B B x
10 9 com23 A On B On x A ¬ x suc B B x
11 10 imp4b A On B On x A ¬ x suc B B x
12 1 11 syl5bi A On B On x A suc B B x
13 12 ralrimiv A On B On x A suc B B x
14 elintg B On B A suc B x A suc B B x
15 14 adantl A On B On B A suc B x A suc B B x
16 13 15 mpbird A On B On B A suc B