Metamath Proof Explorer


Theorem onminsb

Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 3-Oct-2003)

Ref Expression
Hypotheses onminsb.1 x ψ
onminsb.2 x = x On | φ φ ψ
Assertion onminsb x On φ ψ

Proof

Step Hyp Ref Expression
1 onminsb.1 x ψ
2 onminsb.2 x = x On | φ φ ψ
3 rabn0 x On | φ x On φ
4 ssrab2 x On | φ On
5 onint x On | φ On x On | φ x On | φ x On | φ
6 4 5 mpan x On | φ x On | φ x On | φ
7 3 6 sylbir x On φ x On | φ x On | φ
8 nfrab1 _ x x On | φ
9 8 nfint _ x x On | φ
10 nfcv _ x On
11 9 10 1 2 elrabf x On | φ x On | φ x On | φ On ψ
12 11 simprbi x On | φ x On | φ ψ
13 7 12 syl x On φ ψ