Metamath Proof Explorer


Theorem onnminsb

Description: An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. ps is the wff resulting from the substitution of A for x in wff ph . (Contributed by NM, 9-Nov-2003)

Ref Expression
Hypothesis onnminsb.1 x=Aφψ
Assertion onnminsb AOnAxOn|φ¬ψ

Proof

Step Hyp Ref Expression
1 onnminsb.1 x=Aφψ
2 1 elrab AxOn|φAOnψ
3 ssrab2 xOn|φOn
4 onnmin xOn|φOnAxOn|φ¬AxOn|φ
5 3 4 mpan AxOn|φ¬AxOn|φ
6 2 5 sylbir AOnψ¬AxOn|φ
7 6 ex AOnψ¬AxOn|φ
8 7 con2d AOnAxOn|φ¬ψ