Step |
Hyp |
Ref |
Expression |
1 |
|
epweon |
|
2 |
|
fveq2 |
|
3 |
2
|
eleq1d |
|
4 |
|
fveq2 |
|
5 |
4
|
eleq1d |
|
6 |
|
fveq2 |
|
7 |
6
|
eleq1d |
|
8 |
|
simpl |
|
9 |
|
suceq |
|
10 |
9
|
fveq2d |
|
11 |
|
fveq2 |
|
12 |
10 11
|
eleq12d |
|
13 |
12
|
rspcv |
|
14 |
|
onelon |
|
15 |
14
|
expcom |
|
16 |
13 15
|
syl6 |
|
17 |
16
|
adantld |
|
18 |
3 5 7 8 17
|
finds2 |
|
19 |
18
|
com12 |
|
20 |
19
|
ralrimiv |
|
21 |
|
eqid |
|
22 |
21
|
fmpt |
|
23 |
20 22
|
sylib |
|
24 |
23
|
frnd |
|
25 |
|
peano1 |
|
26 |
23
|
fdmd |
|
27 |
25 26
|
eleqtrrid |
|
28 |
27
|
ne0d |
|
29 |
|
dm0rn0 |
|
30 |
29
|
necon3bii |
|
31 |
28 30
|
sylib |
|
32 |
|
wefrc |
|
33 |
1 24 31 32
|
mp3an2i |
|
34 |
|
fvex |
|
35 |
34
|
rgenw |
|
36 |
|
fveq2 |
|
37 |
36
|
cbvmptv |
|
38 |
|
ineq2 |
|
39 |
38
|
eqeq1d |
|
40 |
37 39
|
rexrnmptw |
|
41 |
35 40
|
ax-mp |
|
42 |
33 41
|
sylib |
|
43 |
|
peano2 |
|
44 |
43
|
adantl |
|
45 |
|
eqid |
|
46 |
|
fveq2 |
|
47 |
46
|
rspceeqv |
|
48 |
44 45 47
|
sylancl |
|
49 |
|
fvex |
|
50 |
21
|
elrnmpt |
|
51 |
49 50
|
ax-mp |
|
52 |
48 51
|
sylibr |
|
53 |
|
suceq |
|
54 |
53
|
fveq2d |
|
55 |
|
fveq2 |
|
56 |
54 55
|
eleq12d |
|
57 |
56
|
rspccva |
|
58 |
57
|
adantll |
|
59 |
|
inelcm |
|
60 |
52 58 59
|
syl2anc |
|
61 |
60
|
neneqd |
|
62 |
61
|
nrexdv |
|
63 |
42 62
|
pm2.65da |
|
64 |
|
rexnal |
|
65 |
63 64
|
sylibr |
|