Step |
Hyp |
Ref |
Expression |
1 |
|
php5 |
|
2 |
1
|
ad2antlr |
|
3 |
|
enen1 |
|
4 |
3
|
adantl |
|
5 |
2 4
|
mtbird |
|
6 |
|
peano2 |
|
7 |
|
sssucid |
|
8 |
|
ssdomg |
|
9 |
6 7 8
|
mpisyl |
|
10 |
|
endomtr |
|
11 |
9 10
|
sylan2 |
|
12 |
11
|
ancoms |
|
13 |
12
|
a1d |
|
14 |
13
|
adantll |
|
15 |
|
ssel |
|
16 |
15
|
com12 |
|
17 |
16
|
adantr |
|
18 |
|
eloni |
|
19 |
|
ordelsuc |
|
20 |
18 19
|
sylan2 |
|
21 |
17 20
|
sylibd |
|
22 |
|
ssdomg |
|
23 |
22
|
adantl |
|
24 |
21 23
|
syld |
|
25 |
24
|
ancoms |
|
26 |
25
|
adantr |
|
27 |
14 26
|
jcad |
|
28 |
|
sbth |
|
29 |
27 28
|
syl6 |
|
30 |
5 29
|
mtod |
|
31 |
|
ordom |
|
32 |
|
ordtri1 |
|
33 |
31 18 32
|
sylancr |
|
34 |
33
|
con2bid |
|
35 |
34
|
ad2antrr |
|
36 |
30 35
|
mpbird |
|
37 |
|
simplr |
|
38 |
36 37
|
jca |
|
39 |
|
nneneq |
|
40 |
39
|
biimpa |
|
41 |
38 40
|
sylancom |
|
42 |
41
|
ex |
|
43 |
|
eqeng |
|
44 |
43
|
adantr |
|
45 |
42 44
|
impbid |
|