| Step |
Hyp |
Ref |
Expression |
| 1 |
|
endom |
|
| 2 |
|
nnfi |
|
| 3 |
|
domfi |
|
| 4 |
|
simpr |
|
| 5 |
3 4
|
jca |
|
| 6 |
|
domnsymfi |
|
| 7 |
6
|
ex |
|
| 8 |
|
php3 |
|
| 9 |
8
|
ex |
|
| 10 |
7 9
|
nsyld |
|
| 11 |
10
|
adantl |
|
| 12 |
11
|
expimpd |
|
| 13 |
5 12
|
syl5 |
|
| 14 |
2 13
|
mpand |
|
| 15 |
14
|
adantl |
|
| 16 |
|
eloni |
|
| 17 |
|
nnord |
|
| 18 |
|
ordtri1 |
|
| 19 |
|
ordelpss |
|
| 20 |
19
|
ancoms |
|
| 21 |
20
|
notbid |
|
| 22 |
18 21
|
bitrd |
|
| 23 |
16 17 22
|
syl2an |
|
| 24 |
15 23
|
sylibrd |
|
| 25 |
1 24
|
syl5 |
|
| 26 |
25
|
3impia |
|
| 27 |
|
ensymfib |
|
| 28 |
2 27
|
syl |
|
| 29 |
|
endom |
|
| 30 |
28 29
|
biimtrrdi |
|
| 31 |
30
|
imp |
|
| 32 |
31
|
3adant1 |
|
| 33 |
|
nndomog |
|
| 34 |
33
|
ancoms |
|
| 35 |
34
|
biimp3a |
|
| 36 |
32 35
|
syld3an3 |
|
| 37 |
26 36
|
eqssd |
|
| 38 |
37
|
3expia |
|
| 39 |
|
enrefnn |
|
| 40 |
|
breq1 |
|
| 41 |
39 40
|
syl5ibrcom |
|
| 42 |
41
|
adantl |
|
| 43 |
38 42
|
impbid |
|