Metamath Proof Explorer


Theorem onomeneq

Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of TakeutiZaring p. 90 and its converse. (Contributed by NM, 26-Jul-2004) Avoid ax-pow . (Revised by BTernaryTau, 2-Dec-2024)

Ref Expression
Assertion onomeneq A On B ω A B A = B

Proof

Step Hyp Ref Expression
1 endom A B A B
2 nnfi B ω B Fin
3 domfi B Fin A B A Fin
4 simpr B Fin A B A B
5 3 4 jca B Fin A B A Fin A B
6 domnsymfi A Fin A B ¬ B A
7 6 ex A Fin A B ¬ B A
8 php3 A Fin B A B A
9 8 ex A Fin B A B A
10 7 9 nsyld A Fin A B ¬ B A
11 10 adantl B ω A Fin A B ¬ B A
12 11 expimpd B ω A Fin A B ¬ B A
13 5 12 syl5 B ω B Fin A B ¬ B A
14 2 13 mpand B ω A B ¬ B A
15 14 adantl A On B ω A B ¬ B A
16 eloni A On Ord A
17 nnord B ω Ord B
18 ordtri1 Ord A Ord B A B ¬ B A
19 ordelpss Ord B Ord A B A B A
20 19 ancoms Ord A Ord B B A B A
21 20 notbid Ord A Ord B ¬ B A ¬ B A
22 18 21 bitrd Ord A Ord B A B ¬ B A
23 16 17 22 syl2an A On B ω A B ¬ B A
24 15 23 sylibrd A On B ω A B A B
25 1 24 syl5 A On B ω A B A B
26 25 3impia A On B ω A B A B
27 ensymfib B Fin B A A B
28 2 27 syl B ω B A A B
29 endom B A B A
30 28 29 syl6bir B ω A B B A
31 30 imp B ω A B B A
32 31 3adant1 A On B ω A B B A
33 nndomog B ω A On B A B A
34 33 ancoms A On B ω B A B A
35 34 biimp3a A On B ω B A B A
36 32 35 syld3an3 A On B ω A B B A
37 26 36 eqssd A On B ω A B A = B
38 37 3expia A On B ω A B A = B
39 enrefnn B ω B B
40 breq1 A = B A B B B
41 39 40 syl5ibrcom B ω A = B A B
42 41 adantl A On B ω A = B A B
43 38 42 impbid A On B ω A B A = B