Metamath Proof Explorer


Theorem onoviun

Description: A variant of onovuni with indexed unions. (Contributed by Eric Schmidt, 26-May-2009) (Proof shortened by Mario Carneiro, 5-Dec-2016)

Ref Expression
Hypotheses onovuni.1 Lim y A F y = x y A F x
onovuni.2 x On y On x y A F x A F y
Assertion onoviun K T z K L On K A F z K L = z K A F L

Proof

Step Hyp Ref Expression
1 onovuni.1 Lim y A F y = x y A F x
2 onovuni.2 x On y On x y A F x A F y
3 dfiun3g z K L On z K L = ran z K L
4 3 3ad2ant2 K T z K L On K z K L = ran z K L
5 4 oveq2d K T z K L On K A F z K L = A F ran z K L
6 simp1 K T z K L On K K T
7 mptexg K T z K L V
8 rnexg z K L V ran z K L V
9 6 7 8 3syl K T z K L On K ran z K L V
10 simp2 K T z K L On K z K L On
11 eqid z K L = z K L
12 11 fmpt z K L On z K L : K On
13 10 12 sylib K T z K L On K z K L : K On
14 13 frnd K T z K L On K ran z K L On
15 dmmptg z K L On dom z K L = K
16 15 3ad2ant2 K T z K L On K dom z K L = K
17 simp3 K T z K L On K K
18 16 17 eqnetrd K T z K L On K dom z K L
19 dm0rn0 dom z K L = ran z K L =
20 19 necon3bii dom z K L ran z K L
21 18 20 sylib K T z K L On K ran z K L
22 1 2 onovuni ran z K L V ran z K L On ran z K L A F ran z K L = x ran z K L A F x
23 9 14 21 22 syl3anc K T z K L On K A F ran z K L = x ran z K L A F x
24 oveq2 x = L A F x = A F L
25 24 eleq2d x = L w A F x w A F L
26 11 25 rexrnmptw z K L On x ran z K L w A F x z K w A F L
27 26 3ad2ant2 K T z K L On K x ran z K L w A F x z K w A F L
28 eliun w x ran z K L A F x x ran z K L w A F x
29 eliun w z K A F L z K w A F L
30 27 28 29 3bitr4g K T z K L On K w x ran z K L A F x w z K A F L
31 30 eqrdv K T z K L On K x ran z K L A F x = z K A F L
32 5 23 31 3eqtrd K T z K L On K A F z K L = z K A F L