Metamath Proof Explorer


Theorem onpsssuc

Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion onpsssuc A On A suc A

Proof

Step Hyp Ref Expression
1 sucidg A On A suc A
2 eloni A On Ord A
3 ordsuc Ord A Ord suc A
4 2 3 sylib A On Ord suc A
5 ordelpss Ord A Ord suc A A suc A A suc A
6 2 4 5 syl2anc A On A suc A A suc A
7 1 6 mpbid A On A suc A