Metamath Proof Explorer


Theorem onsdom

Description: Any well-orderable set is strictly dominated by an ordinal number. (Contributed by Jeff Hankins, 22-Oct-2009) (Proof shortened by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion onsdom A dom card x On A x

Proof

Step Hyp Ref Expression
1 harcl har A On
2 harsdom A dom card A har A
3 breq2 x = har A A x A har A
4 3 rspcev har A On A har A x On A x
5 1 2 4 sylancr A dom card x On A x