Metamath Proof Explorer


Theorem onsdominel

Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion onsdominel A On B On A C B C A B

Proof

Step Hyp Ref Expression
1 ontri1 B On A On B A ¬ A B
2 1 ancoms A On B On B A ¬ A B
3 inex1g A On A C V
4 ssrin B A B C A C
5 ssdomg A C V B C A C B C A C
6 3 4 5 syl2im A On B A B C A C
7 domnsym B C A C ¬ A C B C
8 6 7 syl6 A On B A ¬ A C B C
9 8 adantr A On B On B A ¬ A C B C
10 2 9 sylbird A On B On ¬ A B ¬ A C B C
11 10 con4d A On B On A C B C A B
12 11 3impia A On B On A C B C A B