Metamath Proof Explorer


Theorem onssmin

Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of TakeutiZaring p. 40. (Contributed by NM, 3-Oct-2003)

Ref Expression
Assertion onssmin A On A x A y A x y

Proof

Step Hyp Ref Expression
1 onint A On A A A
2 intss1 y A A y
3 2 rgen y A A y
4 sseq1 x = A x y A y
5 4 ralbidv x = A y A x y y A A y
6 5 rspcev A A y A A y x A y A x y
7 1 3 6 sylancl A On A x A y A x y