Metamath Proof Explorer


Theorem onssneli

Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994)

Ref Expression
Hypothesis on.1 A On
Assertion onssneli A B ¬ B A

Proof

Step Hyp Ref Expression
1 on.1 A On
2 ssel A B B A B B
3 1 oneli B A B On
4 eloni B On Ord B
5 ordirr Ord B ¬ B B
6 3 4 5 3syl B A ¬ B B
7 2 6 nsyli A B B A ¬ B A
8 7 pm2.01d A B ¬ B A