Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
onssneli
Next ⟩
onssnel2i
Metamath Proof Explorer
Ascii
Unicode
Theorem
onssneli
Description:
An ordering law for ordinal numbers.
(Contributed by
NM
, 13-Jun-1994)
Ref
Expression
Hypothesis
on.1
⊢
A
∈
On
Assertion
onssneli
⊢
A
⊆
B
→
¬
B
∈
A
Proof
Step
Hyp
Ref
Expression
1
on.1
⊢
A
∈
On
2
ssel
⊢
A
⊆
B
→
B
∈
A
→
B
∈
B
3
1
oneli
⊢
B
∈
A
→
B
∈
On
4
eloni
⊢
B
∈
On
→
Ord
⁡
B
5
ordirr
⊢
Ord
⁡
B
→
¬
B
∈
B
6
3
4
5
3syl
⊢
B
∈
A
→
¬
B
∈
B
7
2
6
nsyli
⊢
A
⊆
B
→
B
∈
A
→
¬
B
∈
A
8
7
pm2.01d
⊢
A
⊆
B
→
¬
B
∈
A