Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
onssnum
Next ⟩
indcardi
Metamath Proof Explorer
Ascii
Unicode
Theorem
onssnum
Description:
All subsets of the ordinals are numerable.
(Contributed by
Mario Carneiro
, 12-Feb-2013)
Ref
Expression
Assertion
onssnum
⊢
A
∈
V
∧
A
⊆
On
→
A
∈
dom
⁡
card
Proof
Step
Hyp
Ref
Expression
1
uniexg
⊢
A
∈
V
→
⋃
A
∈
V
2
ssorduni
⊢
A
⊆
On
→
Ord
⁡
⋃
A
3
elong
⊢
⋃
A
∈
V
→
⋃
A
∈
On
↔
Ord
⁡
⋃
A
4
3
biimpar
⊢
⋃
A
∈
V
∧
Ord
⁡
⋃
A
→
⋃
A
∈
On
5
1
2
4
syl2an
⊢
A
∈
V
∧
A
⊆
On
→
⋃
A
∈
On
6
suceloni
⊢
⋃
A
∈
On
→
suc
⁡
⋃
A
∈
On
7
onenon
⊢
suc
⁡
⋃
A
∈
On
→
suc
⁡
⋃
A
∈
dom
⁡
card
8
5
6
7
3syl
⊢
A
∈
V
∧
A
⊆
On
→
suc
⁡
⋃
A
∈
dom
⁡
card
9
onsucuni
⊢
A
⊆
On
→
A
⊆
suc
⁡
⋃
A
10
9
adantl
⊢
A
∈
V
∧
A
⊆
On
→
A
⊆
suc
⁡
⋃
A
11
ssnum
⊢
suc
⁡
⋃
A
∈
dom
⁡
card
∧
A
⊆
suc
⁡
⋃
A
→
A
∈
dom
⁡
card
12
8
10
11
syl2anc
⊢
A
∈
V
∧
A
⊆
On
→
A
∈
dom
⁡
card