Metamath Proof Explorer


Theorem onssr1

Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion onssr1 A dom R1 A R1 A

Proof

Step Hyp Ref Expression
1 r1funlim Fun R1 Lim dom R1
2 1 simpri Lim dom R1
3 limord Lim dom R1 Ord dom R1
4 ordtr1 Ord dom R1 x A A dom R1 x dom R1
5 2 3 4 mp2b x A A dom R1 x dom R1
6 5 ancoms A dom R1 x A x dom R1
7 rankonidlem x dom R1 x R1 On rank x = x
8 6 7 syl A dom R1 x A x R1 On rank x = x
9 8 simprd A dom R1 x A rank x = x
10 simpr A dom R1 x A x A
11 9 10 eqeltrd A dom R1 x A rank x A
12 8 simpld A dom R1 x A x R1 On
13 simpl A dom R1 x A A dom R1
14 rankr1ag x R1 On A dom R1 x R1 A rank x A
15 12 13 14 syl2anc A dom R1 x A x R1 A rank x A
16 11 15 mpbird A dom R1 x A x R1 A
17 16 ex A dom R1 x A x R1 A
18 17 ssrdv A dom R1 A R1 A