Metamath Proof Explorer


Theorem onsucmin

Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion onsucmin A On suc A = x On | A x

Proof

Step Hyp Ref Expression
1 eloni x On Ord x
2 ordelsuc A On Ord x A x suc A x
3 1 2 sylan2 A On x On A x suc A x
4 3 rabbidva A On x On | A x = x On | suc A x
5 4 inteqd A On x On | A x = x On | suc A x
6 sucelon A On suc A On
7 intmin suc A On x On | suc A x = suc A
8 6 7 sylbi A On x On | suc A x = suc A
9 5 8 eqtr2d A On suc A = x On | A x