Metamath Proof Explorer


Theorem onsucuni2

Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion onsucuni2 A On A = suc B suc A = A

Proof

Step Hyp Ref Expression
1 eleq1 A = suc B A On suc B On
2 1 biimpac A On A = suc B suc B On
3 eloni suc B On Ord suc B
4 ordsuc Ord B Ord suc B
5 ordunisuc Ord B suc B = B
6 4 5 sylbir Ord suc B suc B = B
7 suceq suc B = B suc suc B = suc B
8 6 7 syl Ord suc B suc suc B = suc B
9 ordunisuc Ord suc B suc suc B = suc B
10 8 9 eqtr4d Ord suc B suc suc B = suc suc B
11 2 3 10 3syl A On A = suc B suc suc B = suc suc B
12 unieq A = suc B A = suc B
13 suceq A = suc B suc A = suc suc B
14 12 13 syl A = suc B suc A = suc suc B
15 suceq A = suc B suc A = suc suc B
16 15 unieqd A = suc B suc A = suc suc B
17 14 16 eqeq12d A = suc B suc A = suc A suc suc B = suc suc B
18 11 17 syl5ibr A = suc B A On A = suc B suc A = suc A
19 18 anabsi7 A On A = suc B suc A = suc A
20 eloni A On Ord A
21 ordunisuc Ord A suc A = A
22 20 21 syl A On suc A = A
23 22 adantr A On A = suc B suc A = A
24 19 23 eqtrd A On A = suc B suc A = A