Metamath Proof Explorer


Theorem onuninsuci

Description: A limit ordinal is not a successor ordinal. (Contributed by NM, 18-Feb-2004)

Ref Expression
Hypothesis onssi.1 A On
Assertion onuninsuci A = A ¬ x On A = suc x

Proof

Step Hyp Ref Expression
1 onssi.1 A On
2 1 onirri ¬ A A
3 id A = A A = A
4 df-suc suc x = x x
5 4 eqeq2i A = suc x A = x x
6 unieq A = x x A = x x
7 5 6 sylbi A = suc x A = x x
8 uniun x x = x x
9 vex x V
10 9 unisn x = x
11 10 uneq2i x x = x x
12 8 11 eqtri x x = x x
13 7 12 eqtrdi A = suc x A = x x
14 tron Tr On
15 eleq1 A = suc x A On suc x On
16 1 15 mpbii A = suc x suc x On
17 trsuc Tr On suc x On x On
18 14 16 17 sylancr A = suc x x On
19 eloni x On Ord x
20 ordtr Ord x Tr x
21 19 20 syl x On Tr x
22 df-tr Tr x x x
23 21 22 sylib x On x x
24 18 23 syl A = suc x x x
25 ssequn1 x x x x = x
26 24 25 sylib A = suc x x x = x
27 13 26 eqtrd A = suc x A = x
28 3 27 sylan9eqr A = suc x A = A A = x
29 9 sucid x suc x
30 eleq2 A = suc x x A x suc x
31 29 30 mpbiri A = suc x x A
32 31 adantr A = suc x A = A x A
33 28 32 eqeltrd A = suc x A = A A A
34 2 33 mto ¬ A = suc x A = A
35 34 imnani A = suc x ¬ A = A
36 35 rexlimivw x On A = suc x ¬ A = A
37 onuni A On A On
38 1 37 ax-mp A On
39 1 onuniorsuci A = A A = suc A
40 39 ori ¬ A = A A = suc A
41 suceq x = A suc x = suc A
42 41 rspceeqv A On A = suc A x On A = suc x
43 38 40 42 sylancr ¬ A = A x On A = suc x
44 36 43 impbii x On A = suc x ¬ A = A
45 44 con2bii A = A ¬ x On A = suc x