Step |
Hyp |
Ref |
Expression |
1 |
|
onssi.1 |
|
2 |
1
|
onirri |
|
3 |
|
id |
|
4 |
|
df-suc |
|
5 |
4
|
eqeq2i |
|
6 |
|
unieq |
|
7 |
5 6
|
sylbi |
|
8 |
|
uniun |
|
9 |
|
unisnv |
|
10 |
9
|
uneq2i |
|
11 |
8 10
|
eqtri |
|
12 |
7 11
|
eqtrdi |
|
13 |
|
tron |
|
14 |
|
eleq1 |
|
15 |
1 14
|
mpbii |
|
16 |
|
trsuc |
|
17 |
13 15 16
|
sylancr |
|
18 |
|
ontr |
|
19 |
|
df-tr |
|
20 |
18 19
|
sylib |
|
21 |
17 20
|
syl |
|
22 |
|
ssequn1 |
|
23 |
21 22
|
sylib |
|
24 |
12 23
|
eqtrd |
|
25 |
3 24
|
sylan9eqr |
|
26 |
|
vex |
|
27 |
26
|
sucid |
|
28 |
|
eleq2 |
|
29 |
27 28
|
mpbiri |
|
30 |
29
|
adantr |
|
31 |
25 30
|
eqeltrd |
|
32 |
2 31
|
mto |
|
33 |
32
|
imnani |
|
34 |
33
|
rexlimivw |
|
35 |
|
onuni |
|
36 |
1 35
|
ax-mp |
|
37 |
|
onuniorsuc |
|
38 |
1 37
|
ax-mp |
|
39 |
38
|
ori |
|
40 |
|
suceq |
|
41 |
40
|
rspceeqv |
|
42 |
36 39 41
|
sylancr |
|
43 |
34 42
|
impbii |
|
44 |
43
|
con2bii |
|