Step |
Hyp |
Ref |
Expression |
1 |
|
onssi.1 |
|
2 |
1
|
onirri |
|
3 |
|
id |
|
4 |
|
df-suc |
|
5 |
4
|
eqeq2i |
|
6 |
|
unieq |
|
7 |
5 6
|
sylbi |
|
8 |
|
uniun |
|
9 |
|
vex |
|
10 |
9
|
unisn |
|
11 |
10
|
uneq2i |
|
12 |
8 11
|
eqtri |
|
13 |
7 12
|
eqtrdi |
|
14 |
|
tron |
|
15 |
|
eleq1 |
|
16 |
1 15
|
mpbii |
|
17 |
|
trsuc |
|
18 |
14 16 17
|
sylancr |
|
19 |
|
eloni |
|
20 |
|
ordtr |
|
21 |
19 20
|
syl |
|
22 |
|
df-tr |
|
23 |
21 22
|
sylib |
|
24 |
18 23
|
syl |
|
25 |
|
ssequn1 |
|
26 |
24 25
|
sylib |
|
27 |
13 26
|
eqtrd |
|
28 |
3 27
|
sylan9eqr |
|
29 |
9
|
sucid |
|
30 |
|
eleq2 |
|
31 |
29 30
|
mpbiri |
|
32 |
31
|
adantr |
|
33 |
28 32
|
eqeltrd |
|
34 |
2 33
|
mto |
|
35 |
34
|
imnani |
|
36 |
35
|
rexlimivw |
|
37 |
|
onuni |
|
38 |
1 37
|
ax-mp |
|
39 |
1
|
onuniorsuci |
|
40 |
39
|
ori |
|
41 |
|
suceq |
|
42 |
41
|
rspceeqv |
|
43 |
38 40 42
|
sylancr |
|
44 |
36 43
|
impbii |
|
45 |
44
|
con2bii |
|