| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onssi.1 |  | 
						
							| 2 | 1 | onirri |  | 
						
							| 3 |  | id |  | 
						
							| 4 |  | df-suc |  | 
						
							| 5 | 4 | eqeq2i |  | 
						
							| 6 |  | unieq |  | 
						
							| 7 | 5 6 | sylbi |  | 
						
							| 8 |  | uniun |  | 
						
							| 9 |  | unisnv |  | 
						
							| 10 | 9 | uneq2i |  | 
						
							| 11 | 8 10 | eqtri |  | 
						
							| 12 | 7 11 | eqtrdi |  | 
						
							| 13 |  | tron |  | 
						
							| 14 |  | eleq1 |  | 
						
							| 15 | 1 14 | mpbii |  | 
						
							| 16 |  | trsuc |  | 
						
							| 17 | 13 15 16 | sylancr |  | 
						
							| 18 |  | ontr |  | 
						
							| 19 |  | df-tr |  | 
						
							| 20 | 18 19 | sylib |  | 
						
							| 21 | 17 20 | syl |  | 
						
							| 22 |  | ssequn1 |  | 
						
							| 23 | 21 22 | sylib |  | 
						
							| 24 | 12 23 | eqtrd |  | 
						
							| 25 | 3 24 | sylan9eqr |  | 
						
							| 26 |  | vex |  | 
						
							| 27 | 26 | sucid |  | 
						
							| 28 |  | eleq2 |  | 
						
							| 29 | 27 28 | mpbiri |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 25 30 | eqeltrd |  | 
						
							| 32 | 2 31 | mto |  | 
						
							| 33 | 32 | imnani |  | 
						
							| 34 | 33 | rexlimivw |  | 
						
							| 35 |  | onuni |  | 
						
							| 36 | 1 35 | ax-mp |  | 
						
							| 37 |  | onuniorsuc |  | 
						
							| 38 | 1 37 | ax-mp |  | 
						
							| 39 | 38 | ori |  | 
						
							| 40 |  | suceq |  | 
						
							| 41 | 40 | rspceeqv |  | 
						
							| 42 | 36 39 41 | sylancr |  | 
						
							| 43 | 34 42 | impbii |  | 
						
							| 44 | 43 | con2bii |  |