Metamath Proof Explorer


Theorem onunisuci

Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994)

Ref Expression
Hypothesis on.1 A On
Assertion onunisuci suc A = A

Proof

Step Hyp Ref Expression
1 on.1 A On
2 1 ontrci Tr A
3 1 elexi A V
4 3 unisuc Tr A suc A = A
5 2 4 mpbi suc A = A