Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non . (Contributed by NM, 1-Jun-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | onxpdisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj | ||
2 | on0eqel | ||
3 | 0nelxp | ||
4 | eleq1 | ||
5 | 3 4 | mtbiri | |
6 | 0nelelxp | ||
7 | 6 | con2i | |
8 | 5 7 | jaoi | |
9 | 2 8 | syl | |
10 | 1 9 | mprgbir |