Metamath Proof Explorer


Theorem op01dm

Description: Conditions necessary for zero and unit elements to exist. (Contributed by NM, 14-Sep-2018)

Ref Expression
Hypotheses op01dm.b B = Base K
op01dm.u U = lub K
op01dm.g G = glb K
Assertion op01dm K OP B dom U B dom G

Proof

Step Hyp Ref Expression
1 op01dm.b B = Base K
2 op01dm.u U = lub K
3 op01dm.g G = glb K
4 eqid K = K
5 eqid oc K = oc K
6 eqid join K = join K
7 eqid meet K = meet K
8 eqid 0. K = 0. K
9 eqid 1. K = 1. K
10 1 2 3 4 5 6 7 8 9 isopos K OP K Poset B dom U B dom G x B y B oc K x B oc K oc K x = x x K y oc K y K oc K x x join K oc K x = 1. K x meet K oc K x = 0. K
11 simpl B dom U B dom G x B y B oc K x B oc K oc K x = x x K y oc K y K oc K x x join K oc K x = 1. K x meet K oc K x = 0. K B dom U B dom G
12 11 3adantl1 K Poset B dom U B dom G x B y B oc K x B oc K oc K x = x x K y oc K y K oc K x x join K oc K x = 1. K x meet K oc K x = 0. K B dom U B dom G
13 10 12 sylbi K OP B dom U B dom G