Metamath Proof Explorer


Theorem op0le

Description: Orthoposet zero is less than or equal to any element. ( ch0le analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses op0le.b B=BaseK
op0le.l ˙=K
op0le.z 0˙=0.K
Assertion op0le KOPXB0˙˙X

Proof

Step Hyp Ref Expression
1 op0le.b B=BaseK
2 op0le.l ˙=K
3 op0le.z 0˙=0.K
4 eqid glbK=glbK
5 simpl KOPXBKOP
6 simpr KOPXBXB
7 eqid lubK=lubK
8 1 7 4 op01dm KOPBdomlubKBdomglbK
9 8 simprd KOPBdomglbK
10 9 adantr KOPXBBdomglbK
11 1 4 2 3 5 6 10 p0le KOPXB0˙˙X