Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Derive the Axiom of Pairing
op1stb
Metamath Proof Explorer
Description: Extract the first member of an ordered pair. Theorem 73 of Suppes
p. 42. (See op2ndb to extract the second member, op1sta for an
alternate version, and op1st for the preferred version.) (Contributed by NM , 25-Nov-2003)
Ref
Expression
Hypotheses
op1stb.1
⊢ A ∈ V
op1stb.2
⊢ B ∈ V
Assertion
op1stb
⊢ ⋂ ⋂ A B = A
Proof
Step
Hyp
Ref
Expression
1
op1stb.1
⊢ A ∈ V
2
op1stb.2
⊢ B ∈ V
3
1 2
dfop
⊢ A B = A A B
4
3
inteqi
⊢ ⋂ A B = ⋂ A A B
5
snex
⊢ A ∈ V
6
prex
⊢ A B ∈ V
7
5 6
intpr
⊢ ⋂ A A B = A ∩ A B
8
snsspr1
⊢ A ⊆ A B
9
df-ss
⊢ A ⊆ A B ↔ A ∩ A B = A
10
8 9
mpbi
⊢ A ∩ A B = A
11
7 10
eqtri
⊢ ⋂ A A B = A
12
4 11
eqtri
⊢ ⋂ A B = A
13
12
inteqi
⊢ ⋂ ⋂ A B = ⋂ A
14
1
intsn
⊢ ⋂ A = A
15
13 14
eqtri
⊢ ⋂ ⋂ A B = A