Metamath Proof Explorer


Theorem op2ndg

Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005)

Ref Expression
Assertion op2ndg A V B W 2 nd A B = B

Proof

Step Hyp Ref Expression
1 opeq1 x = A x y = A y
2 1 fveqeq2d x = A 2 nd x y = y 2 nd A y = y
3 opeq2 y = B A y = A B
4 3 fveq2d y = B 2 nd A y = 2 nd A B
5 id y = B y = B
6 4 5 eqeq12d y = B 2 nd A y = y 2 nd A B = B
7 vex x V
8 vex y V
9 7 8 op2nd 2 nd x y = y
10 2 6 9 vtocl2g A V B W 2 nd A B = B