Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
First and second members of an ordered pair
op2ndg
Next ⟩
ot1stg
Metamath Proof Explorer
Ascii
Unicode
Theorem
op2ndg
Description:
Extract the second member of an ordered pair.
(Contributed by
NM
, 19-Jul-2005)
Ref
Expression
Assertion
op2ndg
⊢
A
∈
V
∧
B
∈
W
→
2
nd
⁡
A
B
=
B
Proof
Step
Hyp
Ref
Expression
1
opeq1
⊢
x
=
A
→
x
y
=
A
y
2
1
fveqeq2d
⊢
x
=
A
→
2
nd
⁡
x
y
=
y
↔
2
nd
⁡
A
y
=
y
3
opeq2
⊢
y
=
B
→
A
y
=
A
B
4
3
fveq2d
⊢
y
=
B
→
2
nd
⁡
A
y
=
2
nd
⁡
A
B
5
id
⊢
y
=
B
→
y
=
B
6
4
5
eqeq12d
⊢
y
=
B
→
2
nd
⁡
A
y
=
y
↔
2
nd
⁡
A
B
=
B
7
vex
⊢
x
∈
V
8
vex
⊢
y
∈
V
9
7
8
op2nd
⊢
2
nd
⁡
x
y
=
y
10
2
6
9
vtocl2g
⊢
A
∈
V
∧
B
∈
W
→
2
nd
⁡
A
B
=
B