Metamath Proof Explorer


Theorem opabex

Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996)

Ref Expression
Hypotheses opabex.1 A V
opabex.2 x A * y φ
Assertion opabex x y | x A φ V

Proof

Step Hyp Ref Expression
1 opabex.1 A V
2 opabex.2 x A * y φ
3 funopab Fun x y | x A φ x * y x A φ
4 moanimv * y x A φ x A * y φ
5 2 4 mpbir * y x A φ
6 3 5 mpgbir Fun x y | x A φ
7 dmopabss dom x y | x A φ A
8 1 7 ssexi dom x y | x A φ V
9 funex Fun x y | x A φ dom x y | x A φ V x y | x A φ V
10 6 8 9 mp2an x y | x A φ V