Metamath Proof Explorer


Theorem opabex2

Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Hypotheses opabex2.1 φ A V
opabex2.2 φ B W
opabex2.3 φ ψ x A
opabex2.4 φ ψ y B
Assertion opabex2 φ x y | ψ V

Proof

Step Hyp Ref Expression
1 opabex2.1 φ A V
2 opabex2.2 φ B W
3 opabex2.3 φ ψ x A
4 opabex2.4 φ ψ y B
5 1 2 xpexd φ A × B V
6 3 4 opabssxpd φ x y | ψ A × B
7 5 6 ssexd φ x y | ψ V