Metamath Proof Explorer
Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
opabex2.1 |
|
|
|
opabex2.2 |
|
|
|
opabex2.3 |
|
|
|
opabex2.4 |
|
|
Assertion |
opabex2 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
opabex2.1 |
|
2 |
|
opabex2.2 |
|
3 |
|
opabex2.3 |
|
4 |
|
opabex2.4 |
|
5 |
1 2
|
xpexd |
|
6 |
3 4
|
opabssxpd |
|
7 |
5 6
|
ssexd |
|