Metamath Proof Explorer


Theorem opabid

Description: The law of concretion. Special case of Theorem 9.5 of Quine p. 61. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker opabidw when possible. (Contributed by NM, 14-Apr-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011) (New usage is discouraged.)

Ref Expression
Assertion opabid x y x y | φ φ

Proof

Step Hyp Ref Expression
1 opex x y V
2 copsexg z = x y φ x y z = x y φ
3 2 bicomd z = x y x y z = x y φ φ
4 df-opab x y | φ = z | x y z = x y φ
5 1 3 4 elab2 x y x y | φ φ