Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
opabid2
Next ⟩
inopab
Metamath Proof Explorer
Ascii
Unicode
Theorem
opabid2
Description:
A relation expressed as an ordered pair abstraction.
(Contributed by
NM
, 11-Dec-2006)
Ref
Expression
Assertion
opabid2
⊢
Rel
⁡
A
→
x
y
|
x
y
∈
A
=
A
Proof
Step
Hyp
Ref
Expression
1
vex
⊢
z
∈
V
2
vex
⊢
w
∈
V
3
opeq1
⊢
x
=
z
→
x
y
=
z
y
4
3
eleq1d
⊢
x
=
z
→
x
y
∈
A
↔
z
y
∈
A
5
opeq2
⊢
y
=
w
→
z
y
=
z
w
6
5
eleq1d
⊢
y
=
w
→
z
y
∈
A
↔
z
w
∈
A
7
1
2
4
6
opelopab
⊢
z
w
∈
x
y
|
x
y
∈
A
↔
z
w
∈
A
8
7
gen2
⊢
∀
z
∀
w
z
w
∈
x
y
|
x
y
∈
A
↔
z
w
∈
A
9
relopabv
⊢
Rel
⁡
x
y
|
x
y
∈
A
10
eqrel
⊢
Rel
⁡
x
y
|
x
y
∈
A
∧
Rel
⁡
A
→
x
y
|
x
y
∈
A
=
A
↔
∀
z
∀
w
z
w
∈
x
y
|
x
y
∈
A
↔
z
w
∈
A
11
9
10
mpan
⊢
Rel
⁡
A
→
x
y
|
x
y
∈
A
=
A
↔
∀
z
∀
w
z
w
∈
x
y
|
x
y
∈
A
↔
z
w
∈
A
12
8
11
mpbiri
⊢
Rel
⁡
A
→
x
y
|
x
y
∈
A
=
A