Metamath Proof Explorer


Theorem opabresid

Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012)

Ref Expression
Assertion opabresid I A = x y | x A y = x

Proof

Step Hyp Ref Expression
1 df-id I = x y | x = y
2 equcom x = y y = x
3 2 opabbii x y | x = y = x y | y = x
4 1 3 eqtri I = x y | y = x
5 4 reseq1i I A = x y | y = x A
6 resopab x y | y = x A = x y | x A y = x
7 5 6 eqtri I A = x y | x A y = x