Metamath Proof Explorer


Theorem opabresidOLD

Description: Obsolete version of opabresid as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion opabresidOLD x y | x A y = x = I A

Proof

Step Hyp Ref Expression
1 resopab x y | y = x A = x y | x A y = x
2 equcom y = x x = y
3 2 opabbii x y | y = x = x y | x = y
4 df-id I = x y | x = y
5 3 4 eqtr4i x y | y = x = I
6 5 reseq1i x y | y = x A = I A
7 1 6 eqtr3i x y | x A y = x = I A