Metamath Proof Explorer


Theorem opabss

Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion opabss x y | x R y R

Proof

Step Hyp Ref Expression
1 df-opab x y | x R y = z | x y z = x y x R y
2 df-br x R y x y R
3 eleq1 z = x y z R x y R
4 3 biimpar z = x y x y R z R
5 2 4 sylan2b z = x y x R y z R
6 5 exlimivv x y z = x y x R y z R
7 6 abssi z | x y z = x y x R y R
8 1 7 eqsstri x y | x R y R