Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 9-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | opabss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab | ||
2 | df-br | ||
3 | eleq1 | ||
4 | 3 | biimpar | |
5 | 2 4 | sylan2b | |
6 | 5 | exlimivv | |
7 | 6 | abssi | |
8 | 1 7 | eqsstri |