Metamath Proof Explorer


Theorem opabssi

Description: Sufficient condition for a collection of ordered pairs to be a subclass of a relation. (Contributed by Peter Mazsa, 21-Oct-2019) (Revised by Thierry Arnoux, 18-Feb-2022)

Ref Expression
Hypothesis opabssi.1 φ x y A
Assertion opabssi x y | φ A

Proof

Step Hyp Ref Expression
1 opabssi.1 φ x y A
2 df-opab x y | φ = z | x y z = x y φ
3 eleq1 z = x y z A x y A
4 3 biimprd z = x y x y A z A
5 4 1 impel z = x y φ z A
6 5 exlimivv x y z = x y φ z A
7 6 abssi z | x y z = x y φ A
8 2 7 eqsstri x y | φ A