Description: Sufficient condition for a collection of ordered pairs to be a subclass of a relation. (Contributed by Peter Mazsa, 21-Oct-2019) (Revised by Thierry Arnoux, 18-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opabssi.1 | ||
Assertion | opabssi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabssi.1 | ||
2 | df-opab | ||
3 | eleq1 | ||
4 | 3 | biimprd | |
5 | 4 1 | impel | |
6 | 5 | exlimivv | |
7 | 6 | abssi | |
8 | 2 7 | eqsstri |