Metamath Proof Explorer


Theorem opabssi

Description: Sufficient condition for a collection of ordered pairs to be a subclass of a relation. (Contributed by Peter Mazsa, 21-Oct-2019) (Revised by Thierry Arnoux, 18-Feb-2022)

Ref Expression
Hypothesis opabssi.1 φxyA
Assertion opabssi xy|φA

Proof

Step Hyp Ref Expression
1 opabssi.1 φxyA
2 df-opab xy|φ=z|xyz=xyφ
3 eleq1 z=xyzAxyA
4 3 biimprd z=xyxyAzA
5 4 1 impel z=xyφzA
6 5 exlimivv xyz=xyφzA
7 6 abssi z|xyz=xyφA
8 2 7 eqsstri xy|φA